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Symmetries, first integrals and the inverse problem of 
Lagrangian mechanics 

Willy Sarlet 
Instituut voor Theoretische Mechanica, Rijksuniversiteit Gent, Krijgslaan 27149,  B-9000 
Gent, Belgium 

Received 2 February 1981 

Abstract. The paper deals with the following question: given a symmetry vector field Y of a 
system of second-order ordinary differential equations, and an associated constant of the 
motion F, is it possible to find a Lagrangian L for the system, such that Y becomes a Noether 
symmetry with respect to L, and F its implied Noether constant? It is shown that for one 
degree of freedom systems the answer to this question is affirmative. In addition, attention 
is paid to the construction of a suitable constant of the motion F for given symmetry Y and 
vice versa. Several examples are discussed. 

1. Introduction 

In recent papers we have presented a comparative review of different approaches to 
Noether’s theorem in classical mechanics (Sarlet and Cantrijn 1981a), as well as some 
generalisations (Sarlet and Cantrijn 1981b). As is well known, Noether’s theorem 
(Noether 1918) in one way or another establishes a link between invariance trans- 
formations of the action integral and constants of the motion. Most familiar is the 
energy integral of conservative systems, which can be related to time-translation 
invariance of an action principle. Often, however, there have been misconceptions 
about these matters, which mainly originate from the following observations. First, 
there are ambiguities in the possible Lagrangian descriptions of given second-order 
equations, and secondly, an invariance transformation of the equations of motion is not 
necessarily a symmetry of a given Lagrangian representation. Interesting papers in this 
respect are those of Havas (1973) and Marmo and Saletan (1977). This brings us to the 
second part of our title: the inverse problem of Lagrangian mechanics, i.e. the question 
of how to construct (if possible) a Lagrangian for given second-order (ordinary) 
differential equations. For a list of references, and a historical coverage of this topic, see 
Santilli (1978). 

In reviewing different versions of Noether’s theorem, we have expressed a pre- 
ference for those versions in which there is some kind of uniqueness in the relationship 
between symmetry generators of Noether type Y and constants of the motion F (in fact 
a precise one-to-one correspondence between equivalence classes of Y’s and F’s).  Of 
course, such a statement of uniqueness is strictly related to a given, fixed Lagrangian 
description. It is even a necessary prerequisite if one wants to study subsequently the 
influence of passing from one Lagrangian description to another. 

0305-4470/81/092227 + 12$01.50 @ 1981 The Institute of Physics 2227 



2228 W Sarlet 

If we schematically represent Noether’s theorem and its converse by the full arrows 
in figure 1, we immediately face a complementary problem (represented by the broken 
lines), namely whether the knowledge of a symmetry generator Y and corresponding 
constant of the motion F can help us to construct a Lagrangian for a given system. 

L 

Figure 1. Full lines represent Noether’s theorem with converse; broken lines suggest the 
problem discussed here: for given symmetry and related first integral, find a suitable 
Lagrangian. 

This question is the subject of the present paper, and will be described in more 
precise terms in the next section. In studying this question, one quickly observes that 
the case of one degree of freedom substantially differs from the multiple degree of 
freedom case, and therefore deserves a separate treatment. The fact that the inverse 
problem for systems with one degree of freedom always has solutions is already a 
sufficient motivation for this. Moreover, there is ample material (on systems with one 
degree of freedom) with which our results can be compared. In some sense our present 
results, for example, will generalise those of Kobussen (1979) and Sarlet (1978). It also 
suits us here to recall recent studies related to the complete (point) symmetry group of 
the harmonic oscillator and other linear equations (Wulfman and Wybourne 1976, 
Lutzky 1978, Leach 1980a, b, c). These studies reveal an eight-parameter group of 
point symmetries. A five-parameter subgroup consists of Noether symmetries (with 
respect to the usual Lagrangian), while the three complementary symmetries are then 
referred to as non-Noether symmetries. The main theorem of the present paper will 
show that these ‘non-Noether’ symmetries are actually Noether symmetries, but with 
respect to an ‘unusual’ Lagrangian description. 

The plan of the paper is as follows. Section 2 recalls the appropriate form of 
Noether’s theorem on which we will rely, as well as some related results. An example, 
treated in § 3, serves as an introduction to the main theorem which is proved in § 4. This 
section further contains results for the cases that only Y or only F are known. Section 5 
presents a number of other examples, which are selected to clarify links with earlier 
quoted papers. Problems related to the generalisation for systems with multiple degree 
of freedom are briefly discussed in 0 6. 

2. Preliminaries 

The contents of this section are general in the sense that everything applies to systems 
with multiple degree of freedom. We make use of elementary operations on differential 
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forms, with notations which are customary in a differential geometric context. The 
further analysis, however, is entirely local and not very geometrical in character. For 
general definitions related to the calculus of differential forms and vector fields, one can 
consult e.g. Abraham and Marsden (1978) or Godbillon (1969), but an intuitive sketch 
like the one in Sarlet and Cantrijn (1981a) will amply suffice for the scope of this paper. 

Consider first a general system of n second-order ordinary differential equations, 
written in normal form, 

(1) 4'' = A'(t, 4, q ) ,  i = 1 , .  . . , n. 

Passing to an equivalent first-order system in the usual way, it can be associated with the 
following vector field in (t, q, 4 )  space: 

r = 8 / 8 t + d '  8/8q'+Ai(t,q, 4 )  8/84'. (2) 

6' = L dt + (aL/@')(dq' - 4'  dt), (3) 

If system (1) is derivable from a Lagrangian L(t, 4, 4 ) ,  we can consider the one-form 

often called PoincarbCartan form. Saying that (1) is a system of Euler-Lagrange 
equations is then equivalent to saying that J? is a characteristic vector field of de, i.e. 

ir de = 0,  (4) 

where ir stands for the inner product of forms with r. 
A vector field Y generates an infinitesimal symmetry transformation of system ( l ) ,  if 

LYr=[y ,  r] = gr, ( 5 )  

Y = T o ,  q,4) a/at+&t, q,q) 8/84' + d t ,  4,q)  8/34', 

where g is some function of t, 4, 4, and Ly  is the Lie derivative. If Y is represented in 
the form 

(6) 

the symmetry requirement ( 5 )  means that 

= r(6') -qiIyT) = r(ti -qiT)+hiT, 

Y(A')  = r(Ti)-A'r(T). 
Multiples of I' are 'trivial symmetries' of (1). Therefore we can call two symmetries Yl 
and Y2 equivalent if they differ by such a multiple, 

Yz = Yi + h I- ( h  a function). (9) 
Choosing h = -7 for a symmetry like (6), we can work with the equivalent symmetry 
(again denoted by Y ) ,  

Y = p i ( t ,  q,4) 8/34'  + v'(t, q,4) 8/84 ' ,  

p i  =g+, 

v i  = r(pl), 

where 

and the symmetry requirements (7) and (8) reduce to 

Y ( A i )  = I'(v'). (13) 

For systems (1) which are derivable from a Lagrangian L, we can consider a subclass of 
symmetries, called Noether symmetries, defined as follows. 



2230 W Sarlet 

Definition. Let r satisfy condition (4), with 0 defined by (3). Then Y is a Noether 
symmetry with respect to the Lagrangian L if and only if 

Ly d0 = 0. (14) 

Condition (14), in this purely local context, of course implies Lye = df for some 
function f, and one can easily prove the following version of Noether’s theorem (with 
converse). 

Theorem (Noether). Let I‘ satisfy (4) for some Lagrangian L ;  then 

motion F, which is uniquely determined (up to a trivial constant) by 
(i) to each Noether symmetry Y (with respect to L )  corresponds a constant of the 

i y  d e  =dF; (15) 

(ii) to each constant of the motion F of r corresponds a Noether symmetry Y, which 

(iii) F is in addition an invariant of Y, i.e. 
is unique up to an equivalence of type (9); 

Y ( F )  = 0. (16) 
The statements (i) and (ii) now give a precise meaning to the full arrows of figure 1, while 
the property (iii) is particularly useful for the type of problem we want to investigate 
here: given a general symmetry Y of r, and a constant of the motion F, can we find a 
Lagrangian L for system ( l ) ,  such that Y and F become interrelated through Noether’s 
theorem with respect to that L? Obviously by (iii), a necessary prerequisite for a 
positive answer to that question is that Y and F satisfy (16). 

In studying different versions of Noether’s theorem (Sarlet and Cantrijn 1981a), we 
have proved some kind of equivalence between the approach summarised above and 
the original approach via invariance of the action integral. The precise formulation of 
this equivalence will be useful in proving the main theorem of 04, and therefore is 
recalled here in a slightly different form as a lemma. 

Lemma. Let 0 be a one-form of type (3), F a function, and Y a vector field of type (10). 
Then 

B i Y  d0 = dF, 

(a laq ’ ,  i y  d0 -dF)  = 0 

(1) r ( F )  = 0 

v i  = r(@l) I 
where (, ) stands for the pairing between one-forms and vector fields. 

in a local coordinate expression reads 
Finally, we want to re-emphasise the importance of the first of equations (I), which 

(azL/aql aql)pu’ = -aF/aq‘. (17) 

When L and F are given, equation (17) enables us to compute immediately the Noether 
symmetry Y corresponding to F. Indeed, @ * . I  being determined by (17), the remaining 
components Y ’  of Y follow directly from one of the symmetry requirements, namely 
(12). It is clear now that the same relation (17) can also play a crucial role in the present 
context, because it contains in one and the same formula not only ingredients from the 
symmetry Y and the constant F, but also the factor a2L/&j‘ ad’, which after all is the 
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multiplier which should transform equation (1) to an Euler-Lagrange form. For more 
details about the contents of this section, see Sarlet and Cantrijn (1981a, b). 

From now on, we will specialise to the case n = 1, and first illustrate the use of 
equation (17) on an example. 

3. An example 

Consider the simple harmonic oscillator equation, 

4 = -4,  (18) 
As stated in the Introduction, it is well known that (18) has exactly eight point- 
symmetries, i.e. symmetry generators like ( 6 )  for which ( and 7 do not depend on 4, five 
of which are Noether symmetries with respect to the usual Lagrangian $ ( d 2  -4’). One 
of the so-called non-Noether symmetries is defined by 

6 = q2  cos t, 7 = q sin t, (19) 

q being determined by (7). It is straightforward to check that 

F =  Ci/Cz, 
where C1 and C2 are the linear first integrals 

C1 = q cos t - 4  sin t, C 2 = q  sin t+cj cost, (21) 

is a constant of the motion satisfying property (16) with respect to the symmetry (19). 
Hence we can ask whether a Lagrangian exists for which (19) becomes a Noether 
symmetry and (20) its corresponding invariant. If L is such a Lagrangian, we must have 
a relation like (17), which here becomes 

a2L/aq2 = i/clc;. (22) 

So, all we have to do is find a particular solution of (22) (considered as a partial 
differential equation for L) ,  and then see whether adding appropriate linear terms in 4 
can actually provide us with a Lagrangian for the given equation (18). Integrating 
equation (22) twice, one easily obtains the particular solution 

q c o s t - q s i n t  
q sin t + q  cos t 

~ ( t ,  q, 4 )  = q-2 (q  cos t - cj sin t )  In 

and it is straightforward to check that the Euler-Lagrange equation computed from 
(23) is indeed equivalent to equation (18). 

4. General results 

We show now that the construction made in the previous section will always work for 
systems with one degree of freedom (of course in some open domain where all functions 
are assumed to be sufficiently smooth). So consider an arbitrary second-order equation 

4 = Nt, 4,412 

with corresponding vector field r as in (2). 
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Theorem 1.  Let Y be a general symmetry (in the representation (10)) of r, and F a 
constant of the motion (i.e. r(F) = 0) satisfying condition (16). Then there exists a 
Lagrangian L for equation (24), such that Y becomes a Noether symmetry with respect 
to L, and F its corresponding Noether invariant. Such an L follows from integrating the 
equation 

(a2L/aq2)p = -aF/aq, (25) 

adding if necessary a suitable linear part in 4. 

Proof. We have the identity 

Computing r of both sides of (25), making use of the identity (26), taking account of 
r(F) = 0 and of the symmetry requirement v = Up)) ,  we obtain 

Next, multiplying (25) by -v, (27) by k, and adding the results, we obtain in view of 
Y ( F )  = 0 

or r(aL/ad)--aL/ag = l(t, q )  for some function l(t, 4) .  Putting 

L' = L + a (t ,  q)d + b(t, q ) ,  

aalat -ab/@ + 1 = 0 

r(aL'/aq) - aL'/aq = 0, 

(28) 

and choosing a and b in such a way that 

(29) 

(different solutions only differ by gauge terms), we have 

which expresses that the Euler-Lagrange equation computed from L' will be equivalent 
to the given equation (24). With L', introduce the one-form 8' as in (3). We then have 

(a/&j, i y  de'-dF)=O, 

which is just another way of writing equation (25) for L'. Moreover, we know that 
r(F) = 0, and that v = r ( p ) .  Hence the lemma of 0 2 implies i y  do '=  dF, which 
expresses that Y is a Noether symmetry with respect to L', corresponding to the 
constant of the motion F. 

Remarks 
(i) Y of course need not be a point symmetry in the above general result. 
(ii) Different F's with the same Y will in general yield different Lagrangians. 
(iii) In the above proof, we have only used the condition Y = r ( p ) ,  and not the other 

condition Y ( A )  = r ( v ) ,  which is needed to ensure that Y is a symmetry of r. Since in 
our conclusion Y turns out to be a Noether symmetry (and hence certainly a symmetry 
of r), theorem 1 implicitly contains the statement: If Y = p 8 / 8 4  + Y 8/84 is a vector 
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field with property Y = r ( p ) ,  and if there exists a constant of the motion F (T(F)  = 0) 
with the property Y(F) = 0, then Y is a symmetry of I?, i.e. Y automatically satisfies the 
requirement Y(h)  = r ( v ) .  This at first sight surprising statement becomes less surpris- 
ing if we note that it can easily be proved in a direct way from the general relation 

[ y, r1= (v -r(PL) 8 / 8 4  + (Y(N - W)) 8 / 8 4  

(iv) Recall that if Y is a symmetry corresponding to the first integral F via the rule 
Y(F) = 0, then 4Y is another symmetry with the same property, if 4 itself is another 
constant of r (Sarlet and Cantrijn 1981a). If we start our analysis with 4Y instead of Y, 
the basic equation becomes 

(a'L/aq2)4p = -aF/aq. 

Hence, if LO is a Lagrangian computed from Y and F, and L1 a Lagrangian computed 
from 4Y and F, it is clear that we will have 

a2Lo/a(i2 = 4 a2Ll/a(i2. (30) 

It is a known result (Currie and Saletan 1966) that such a relationship is precisely the 
necessary and sufficient condition for having two equivalent Lagrangians in one 
dimension (apart from the trivial equivalence through gauge terms). So, the freedom of 
passing from Y to 4Y will here exhaust all possibilities for finding equivalent Lagran- 
gians. If in the known expression aF/aq another constant of the motion is recognised as 
a factor, making use of this freedom could simplify the calculation of a Lagrangian. In 
general, however, knowing two independent constants for a system with one degree of 
freedom is a quite optimistic assumption. Nevertheless, it is instructive to illustrate this 
possibility on our harmonic oscillator example of § 3. There we had 

8F/aq = -q/C:, 

so that passing from Y to ( -Ci2)Y will produce the equation a2L/8d2 = 1, which 
obviously will lead to the familiar Lagrangian L = i(d2 - 4'). 

Let us come back now to theorem 1 which, for the part related to existence of a 
Lagrangian, can be summarised schematically as follows: 

r(F)=o + L .  
[ y , r ] = o  I Y(F) = 0 

This naturally suggests the new question: with known symmetry Y of r, does there exist 
a constant F with the above property, and if so, how can we find it? The following 
theorem provides the answer to this question. 

Theorem 2. Let Y = p 8/84 + v 8 / 8 q  be a general symmetry of r; then there exists a 
constant of the motion F of r, satisfying Y(F) = 0. It is of the form 

(31) F = F(t ,  d t ,  4,411, 

where r(t, q, 4 )  = constant is a complete solution of the first-order equation 

= q t ,  q, q) ,  t treated as parameter, (32) 
dq P 
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and F(t, a)  = constant is a complete solution of the first-order equation 

da/dt  =f(a, t ) ,  f ( a ,  t) = r(u). (33) 

Clearly, such an F is unique in the sense that all other solutions are functions of the one 
described above. 

Proof. We start by considering the requirement Y(F) = 0. Its characteristic equations 
are 

dq/p = dq/u = dt/O. 

Hence, its general solution is as described by (31) and (32). Obviously, it is assumed 
that Y+O, which implies p+O, so that equation (32) makes sense in some open 
domain. Next, in order that an F of the form (31) be a constant of the motion of r, we 
must have 

dF/at + (aF/aUpya) = 0. (34) 

This requirement can be met if and only if r(a) can be expressed as a function of t and a 
alone, hence if and only if the following Jacobian determinant vanishes identically: 

det[Q(d, d l a ( q ,  4)1= 0. (35) 

Computing condition (35) explicitly, dividing by (au//a4)’ (which is not identically zero), 
and putting 

an appropriate recombination of terms yields the equation 

a v  a0 av ah aA 
at  aq aq aq aq 

r(u) = ( 1 / p 2 ) ( . r w  - P W ) ) .  

- + ~ - + A ~ + - - - u - u  G O .  

Now Y(u)  = 0 implies that we have U = - v / p ,  and consequently 

Finally, Y being a symmetry of r, we have the relations (12) and (13), so that the above 
relation becomes 

which shows that condition (36) is indeed identically satisfied. r(u) being some function 
of the form f(a, t ) ,  the complete statement of the theorem now follows from equation 
(34) via the method of characteristics. 

Corollary. Given a general symmetry Y of r, there exists a Lagrangian L for equation 
(24), such that Y is a Noether symmetry with respect to L. This statement trivially 
follows from theorems 1 and 2. 

Remarks 
(a) The construction of a first integral F according to theorem 2 generalises similar 

results which were discussed by Prince (1980) for point symmetries, in the context of 
Lie’s method of extended groups. Similarly, equation (33) represents the reduction of 
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the given second-order equation to a first-order one through a symmetry Y, in the same 
way as is usually done for point symmetries only (see e.g. Bluman and Cole (1974)). 

(b) The combined results of theorems 1 and 2 constitute a generalisation of ideas 
presented previously (Sarlet 1978), but in a discussion which was limited to some 
elementary symmetries, motivated by earlier work of Denman (1965, 1966). 

(c) The above proof not only shows the existence of F, but also the way to compute it 
in the given coordinates. The mere existence of F can most easily be established as 
follows. Since Y and r are commuting vector fields in three dimensions, there exist new 
local coordinates (x, y ,  z )  such that r = a/ax and Y = a / a y .  Hence, arbitrary functions 
of z will satisfy all requirements. We are indebted to the referee for pointing out this 
useful clarification. 

For the sake of completeness, let us also present at least one way in which a suitable 
symmetry Y could be computed, if only F is known. The following result can easily be 
checked by direct verification. 

Theorem 3. Let F be a constant of the motion of r, and g a particular solution of the 
equation 

r(g) = aA/a4. (37) 

F = (aF/a4) expk) ,  v = -(aF/aq) exp(g). (38)  

Then a symmetry of with property Y ( F )  = 0 is determined by the components 

5. Other examples and applications 

In 0 3, we have turned one of the 'non-Noether' point symmetries for the harmonic 
oscillator into a Noether symmetry with respect to an unusual Lagrangian. It is a simple 
exercise to derive similar results for the other two 'non-Noether' symmetries, which can 
be associated with the same first integral F = Cl/C2. 

5.1. Damped harmonic oscillator 

Consider the equation 
2 q = -2yq -woq. 

[=O, 7 = 1 + p = - q ,  

F = h ln[w2q2 + (4  + w ) ~ I  - ( d w )  tan-'[(4 + w)/wq1, 

The time-translation symmetry, 

can be associated with the first integral 

(39) 

where w 2  = w i  - y2  is assumed to be positive. Twice integrating equation (25) for this 
case easily yields the particular solution 

L = p tan-' p - $  In( l+ p2),  p = (wq)-'(4 + 74). 
This is not yet a good Lagrangian for the problem. But following the procedure 
outlined in theorem 1, one easily finds that a Lagrangian is given by 

L' = L -ln(wq). 
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Equation (39) also has the symmetry 6 = 4, T = 0, which can be associated with the first 
integral 

F = tan-' p +ut, 

and eventually leads to the Lagrangian 

These results confirm those obtained by Sarlet (1978). 
We would like now to illustrate on this example another way in which the ideas of 

the previous section could find applications. As said before, when only an F is known, it 
can in general be difficult to find (e.g. via theorem 3) a corresponding Y. Yet it can 
happen that a class of symmetry transformations for a given differential equation can be 
identified very easily, and then it becomes a simple matter to check whether, among the 
infinitesimal generators of these transformations, a Y exists corresponding to the given 
F. 

For the damped harmonic oscillator, one easily recognises the following class of 
one-parameter families of symmetry transformations (t, q)  f* (T,  Q), 

where h(O)=O, g(O)=O, but h and g are further arbitrary. The corresponding 
infinitesimal generators are obtained by computing d/dA at A = 0. Setting c = h'(O), 
a = g'(O), we obtain 

e =  aq, 7 = c + p = aq -cq. (41) 

Consider now the constant of the motion 

F = 1 exp(2yt)(q2 + 2744 + w & ~ )  

(see e.g. Bahar and Kwatny (1981)). 

Choosing c = 1, a = -7, equation (25) becomes 

a2L/aq2 = exp(2yt), 

Requiring Y (F) = 0 for a Y of type (41) immediately yields the condition a + cy = 0. 

which leads to the familiar Lagrangian 

5.2. General autonomous equations 

Consider for example the equation 
q = -kq 2 

which has the first integral F = 4 exp(kq). It can obviously be associated with the 
time-translation symmetry of the differential equation, and in this way gives rise to the 
Lagrangian 

L=d( l - lnc j )  exp(kq). 
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Now a general autonomous equation, 

4 = Mq, 41, (43) 

of course always has the time-translation symmetry 

Y = -4 a/aq - n(q, 4 )  a l a 4  (44) 

(equivalent to Y = a / a t  via addition of I‘). 
Theorem 2 states that such an equation certainly has a time-independent first 

integral F(q, 4 ) .  It is interesting to refer here to a paper by Kobussen (1979), in which 
the author discusses the inverse problem for autonomous equations like (43). His main 
result is that the Lagrangian for such an equation is of the form 

Computing the second derivative of (45) with respect to 4, we find 

a2L/aq2 = (114) aF/aq, 

which is precisely our equation (25) related to the symmetry (44). Theorem 1 therefore 
generalises Kobussen’s treatment, in the sense that his results can be understood as 
belonging to the particular case of time-translation symmetry. 

6. Concluding remarks 

We have tried to complete the ‘open base’ of the triangular diagram of figure 1, which is 
suggested by Noether’s theorem in classical mechanics. For the time being, our analysis 
has been restricted to the simple case of systems with one degree of freedom. Some of 
the arguments we have used certainly will carry over to the multiple degree of freedom 
case. Let us refer for example to Lutzky (1979), who has briefly discussed the problem 
of finding an appropriate first integral for given symmetry, not necessarily of point type. 
Still it remains true that the case of one degree of freedom is substantially different from 
the case n > 1. Theorem 1 can certainly not be generalised in the same terms to cases 
where n > 1. To illustrate this, it suffices to make the following observation about 
equation (17) with L unknown. For n = 1, once a particular solution is known, other 
solutions can differ from this one by at most linear terms in 4, and this played a role in 
our theorem 1. For general n, however, the homogeneous equation will have solutions 
not satisfying a2L/aq‘ 84’ = 0. Nevertheless, we hope to present some analogous 
considerations for general n in a forthcoming paper. There seem to be two possible 
directions in which to go: either, the knowledge of one Y and corresponding F could at 
least reduce the problem of construction of a Lagrangian, or the existence of such a 
Lagrangian could be ensured if a sufficiently large Lie algebra of symmetries with 
corresponding F’s is known. In this respect, we have to mention the important work by 
Takens (1977), who has constructed a very general abstract mathematical theory, in 
which questions similar to the one treated here have been solved. We have been using 
much more elementary techniques, and it would be a non-trivial problem to ‘translate’ 
Takens’ results to the particular situation discussed in this paper, because already the 
notions of symmetry and conserved quantity are quite differently defined here. 
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